Delving Deep into Rectifiers


This paper proposed a new initialization method for the weights in neural networks and introduced a new activation function called Parametric ReLU {PReLU}.

Introduction

This paper's main contributions are the introduction of a new initialization method for rectifier networks {called "He Initialization"} and the proposal of a new variant of the ReLU activation function called the Parametric Rectified Linear Unit {PReLU}.

He Initialization

The authors noted that the existing initialization methods, such as Xavier initialization, did not perform well for networks with rectified linear units {ReLUs}. Xavier initialization is based on the assumption that the activations are linear. However, ReLUs are not linear functions, which might cause the variance of the outputs of neurons to be much larger than the variance of their inputs.

To address this issue, the authors proposed a new method for initialization, which they referred to as "He Initialization". It is similar to Xavier initialization, but it takes into account the non-linearity of the ReLU function. The initialization method is defined as follows:

[ W \sim \mathcal{N}\left(0, \sqrt{\frac{2}{n_{\text{in}}}}\right) ]

where (n_{\text{in}}) is the number of input neurons, (W) is the weight matrix, and (\mathcal{N}(0, \sqrt{\frac{2}{n_{\text{in}}}})) represents a Gaussian distribution with mean 0 and standard deviation (\sqrt{\frac{2}{n_{\text{in}}}}).

Parametric ReLU {PReLU}

The paper also introduces a new activation function called the Parametric Rectified Linear Unit {PReLU}. The standard ReLU activation function is defined as (f(x) = \max(0, x)), which means that it outputs the input directly if it is positive, otherwise, it outputs zero. While it has advantages, the ReLU function also has a drawback known as the "dying ReLU" problem, where a neuron might always output 0, effectively killing the neuron and preventing it from learning during the training process.

The PReLU is defined as follows:

[ f(x) = \begin{cases} x & \text{if } x \geq 0 \newline a_i x & \text{if } x < 0 \end{cases} ]

where (a_i) is a learnable parameter. When (a_i) is set to 0, PReLU becomes the standard ReLU function. When (a_i) is set to a small value {e.g., 0.01}, PReLU becomes the Leaky ReLU function. However, in PReLU, (a_i) is learned during the training process.

Experimental Results

The authors tested their methods on the ImageNet Large-Scale Visual Recognition Challenge 2014 {ILSVRC2014} dataset and achieved top results. Using an ensemble of their models, they achieved an error rate of 4.94%, surpassing the human-level performance of 5.1%.

Implications

The introduction of He Initialization and PReLU have had significant impacts on the field of deep learning:

of deeper networks.

Limitations

While the He initialization and PReLU have been widely adopted, they are not without limitations:

Conclusion

In conclusion, the paper "Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification" made significant contributions to the field of deep learning by introducing He initialization and the PReLU activation function. These methods have been widely adopted and have helped improve the performance of deep neural networks, particularly in computer vision tasks.



Tags: Delving Deep into Rectifiers, Optimization
👁️ 1501
hills
19:52
30.05.23
you need login for comment